YMC-Triart Columns

YMC-Triart is based on organic/inorganic hybrid particles. The particle combines the high mechanical stability and high efficiency of a silica-based packing material with the high chemical stability of a polymer-based packing material. The granulation process utilizing microreactor technology enables continuous and highly controlled production of hybrid particles. The particle's uniform pore size distribution, smooth surface, and uniform particle size greatly contribute to excellent peak shape and separation reproducibility.

YMC-Triart Phases

Phase	Functional Group	Particle Size		USP	Pore	Carbon	End-	Recommended Use		Part #s
		Analytical Columns	Prep Columns	Class No.	Size	load	capped	pH range	Max Temperature*	start with
Triart C18	C18	1.9 μm, 3 μm, 5 μm	5 μm, 7 μm 10 μm, 15 μm	L1	120 Å	20%	Yes	1-12	pH 1-7: 90° C pH 7-12: 50° C	TA12
Triart C18 ExRS	C18		5 µm	L1	80 Å	25%	Yes	1-12		TAR08
Triart C8	C8		5 μm, 10 μm, 15 μm, 20 μm	L7	120 Å	17%	Yes	1-12		TO12
Triart Phenyl	Phenyl Butyl		5 μm, 10 μm	L11		17%	Yes	1-10	50º C	TPH12
Triart PFP	Pentafluoro- phenyl		5 μm	L43		15%	No	1-8	50° C	TPF12
Triart Bio C18	C18			L1	300 Å	-	Yes	1-12	pH 1-9: 90° C pH 9-12: 50° C	TA30
Triart Bio C4	C4 (Butyl)			L26		-	Yes	1-10	pH 1-7: 90° C pH 7-10: 50° C	TB30
Triart Diol-HILIC	Dihydroxy- propyl			L20	120 Å	12%	No	2-10	50º C	TDH12

*Recommended temperature range for normal use of all Triart chemistries: 20 - 40° C

= 100% aqueous stable (no phase de-wetting for RP)

All Triart phases are trifunctionally bonded.

Aside from PFP and HILIC, all have multi-stage endcapping.

Available hardware types:

Stainless steel part numbers end in PT, PTH, or WT

Accura Triart bioinert frit and column body through CVD coating -part numbers end in PTC

PEEK-lined stainless steel -part numbers end in PTP

You can also access the brochure via this link: https://www.ymcamerica.com/resource/ymc-triart/

Your source for chromatography systems, consumables, and services.

YMC America, Inc. Tel: +1 978 487 1100 info@ymcamerica.com www.ymcamerica.com

YMC-Triart Phase Overview & Tanaka Values

